active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
CONS(X1, mark(X2)) → CONS(X1, X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
MARK(nats(X)) → NATS(mark(X))
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
NATS(mark(X)) → NATS(X)
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
ACTIVE(zprimes) → S(0)
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
S(active(X)) → S(X)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
MARK(filter(X1, X2, X3)) → FILTER(mark(X1), mark(X2), mark(X3))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(filter(X1, X2, X3)) → MARK(X2)
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(zprimes) → S(s(0))
ACTIVE(zprimes) → NATS(s(s(0)))
ACTIVE(zprimes) → MARK(sieve(nats(s(s(0)))))
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
MARK(s(X)) → MARK(X)
NATS(active(X)) → NATS(X)
ACTIVE(nats(N)) → NATS(s(N))
FILTER(X1, active(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(nats(X)) → MARK(X)
SIEVE(active(X)) → SIEVE(X)
MARK(zprimes) → ACTIVE(zprimes)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
FILTER(X1, X2, active(X3)) → FILTER(X1, X2, X3)
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
FILTER(active(X1), X2, X3) → FILTER(X1, X2, X3)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
MARK(sieve(X)) → SIEVE(mark(X))
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
MARK(0) → ACTIVE(0)
ACTIVE(nats(N)) → S(N)
MARK(sieve(X)) → MARK(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(filter(cons(X, Y), 0, M)) → FILTER(Y, M, M)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(nats(N)) → CONS(N, nats(s(N)))
CONS(X1, mark(X2)) → CONS(X1, X2)
SIEVE(mark(X)) → SIEVE(X)
ACTIVE(sieve(cons(s(N), Y))) → FILTER(Y, N, N)
MARK(nats(X)) → NATS(mark(X))
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
NATS(mark(X)) → NATS(X)
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
ACTIVE(zprimes) → S(0)
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
S(active(X)) → S(X)
ACTIVE(sieve(cons(s(N), Y))) → CONS(s(N), sieve(filter(Y, N, N)))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
MARK(filter(X1, X2, X3)) → FILTER(mark(X1), mark(X2), mark(X3))
ACTIVE(sieve(cons(0, Y))) → SIEVE(Y)
ACTIVE(zprimes) → SIEVE(nats(s(s(0))))
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(filter(X1, X2, X3)) → MARK(X2)
CONS(active(X1), X2) → CONS(X1, X2)
ACTIVE(zprimes) → S(s(0))
ACTIVE(zprimes) → NATS(s(s(0)))
ACTIVE(zprimes) → MARK(sieve(nats(s(s(0)))))
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(filter(cons(X, Y), s(N), M)) → FILTER(Y, N, M)
MARK(s(X)) → MARK(X)
NATS(active(X)) → NATS(X)
ACTIVE(nats(N)) → NATS(s(N))
FILTER(X1, active(X2), X3) → FILTER(X1, X2, X3)
ACTIVE(filter(cons(X, Y), s(N), M)) → CONS(X, filter(Y, N, M))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
CONS(X1, active(X2)) → CONS(X1, X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(nats(X)) → MARK(X)
SIEVE(active(X)) → SIEVE(X)
MARK(zprimes) → ACTIVE(zprimes)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(filter(cons(X, Y), 0, M)) → CONS(0, filter(Y, M, M))
ACTIVE(sieve(cons(0, Y))) → CONS(0, sieve(Y))
FILTER(X1, X2, active(X3)) → FILTER(X1, X2, X3)
S(mark(X)) → S(X)
MARK(s(X)) → S(mark(X))
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
FILTER(active(X1), X2, X3) → FILTER(X1, X2, X3)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
MARK(sieve(X)) → SIEVE(mark(X))
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
ACTIVE(sieve(cons(s(N), Y))) → SIEVE(filter(Y, N, N))
MARK(0) → ACTIVE(0)
ACTIVE(nats(N)) → S(N)
MARK(sieve(X)) → MARK(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
NATS(mark(X)) → NATS(X)
NATS(active(X)) → NATS(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
NATS(mark(X)) → NATS(X)
NATS(active(X)) → NATS(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SIEVE(active(X)) → SIEVE(X)
SIEVE(mark(X)) → SIEVE(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
SIEVE(active(X)) → SIEVE(X)
SIEVE(mark(X)) → SIEVE(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
S(mark(X)) → S(X)
S(active(X)) → S(X)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
S(active(X)) → S(X)
S(mark(X)) → S(X)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
FILTER(active(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
FILTER(X1, active(X2), X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, active(X3)) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
FILTER(X1, mark(X2), X3) → FILTER(X1, X2, X3)
FILTER(active(X1), X2, X3) → FILTER(X1, X2, X3)
FILTER(X1, active(X2), X3) → FILTER(X1, X2, X3)
FILTER(X1, X2, mark(X3)) → FILTER(X1, X2, X3)
FILTER(X1, X2, active(X3)) → FILTER(X1, X2, X3)
FILTER(mark(X1), X2, X3) → FILTER(X1, X2, X3)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(nats(X)) → MARK(X)
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(zprimes) → ACTIVE(zprimes)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(zprimes) → MARK(sieve(nats(s(s(0)))))
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(zprimes) → MARK(sieve(nats(s(s(0)))))
Used ordering: Polynomial interpretation [25]:
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(nats(X)) → MARK(X)
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(zprimes) → ACTIVE(zprimes)
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = x1
POL(filter(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(nats(x1)) = x1
POL(s(x1)) = x1
POL(sieve(x1)) = x1
POL(zprimes) = 1
nats(active(X)) → nats(X)
nats(mark(X)) → nats(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
active(nats(N)) → mark(cons(N, nats(s(N))))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(nats(X)) → active(nats(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
mark(s(X)) → active(s(mark(X)))
mark(zprimes) → active(zprimes)
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
mark(sieve(X)) → active(sieve(mark(X)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
mark(0) → active(0)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(nats(X)) → MARK(X)
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(sieve(X)) → MARK(X)
MARK(zprimes) → ACTIVE(zprimes)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(nats(X)) → MARK(X)
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVE(nats(N)) → MARK(cons(N, nats(s(N))))
MARK(nats(X)) → MARK(X)
Used ordering: Polynomial interpretation [25]:
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = x1
POL(filter(x1, x2, x3)) = x1 + x2 + x3
POL(mark(x1)) = x1
POL(nats(x1)) = 1 + x1
POL(s(x1)) = x1
POL(sieve(x1)) = x1
POL(zprimes) = 1
nats(active(X)) → nats(X)
nats(mark(X)) → nats(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
active(nats(N)) → mark(cons(N, nats(s(N))))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(nats(X)) → active(nats(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
mark(s(X)) → active(s(mark(X)))
mark(zprimes) → active(zprimes)
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
mark(sieve(X)) → active(sieve(mark(X)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
mark(0) → active(0)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → MARK(X)
MARK(nats(X)) → ACTIVE(nats(mark(X)))
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(filter(X1, X2, X3)) → MARK(X3)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(nats(X)) → ACTIVE(nats(mark(X)))
MARK(filter(X1, X2, X3)) → ACTIVE(filter(mark(X1), mark(X2), mark(X3)))
MARK(sieve(X)) → ACTIVE(sieve(mark(X)))
MARK(filter(X1, X2, X3)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(sieve(X)) → MARK(X)
MARK(filter(X1, X2, X3)) → MARK(X1)
Used ordering: Polynomial interpretation [25]:
MARK(s(X)) → MARK(X)
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
POL(0) = 0
POL(ACTIVE(x1)) = x1
POL(MARK(x1)) = 1 + x1
POL(active(x1)) = x1
POL(cons(x1, x2)) = x1
POL(filter(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(mark(x1)) = x1
POL(nats(x1)) = x1
POL(s(x1)) = x1
POL(sieve(x1)) = 1 + x1
POL(zprimes) = 1
nats(active(X)) → nats(X)
nats(mark(X)) → nats(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
active(nats(N)) → mark(cons(N, nats(s(N))))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(nats(X)) → active(nats(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
mark(s(X)) → active(s(mark(X)))
mark(zprimes) → active(zprimes)
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
mark(sieve(X)) → active(sieve(mark(X)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
mark(0) → active(0)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MARK(s(X)) → MARK(X)
ACTIVE(sieve(cons(0, Y))) → MARK(cons(0, sieve(Y)))
ACTIVE(filter(cons(X, Y), 0, M)) → MARK(cons(0, filter(Y, M, M)))
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(sieve(cons(s(N), Y))) → MARK(cons(s(N), sieve(filter(Y, N, N))))
ACTIVE(filter(cons(X, Y), s(N), M)) → MARK(cons(X, filter(Y, N, M)))
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
active(filter(cons(X, Y), 0, M)) → mark(cons(0, filter(Y, M, M)))
active(filter(cons(X, Y), s(N), M)) → mark(cons(X, filter(Y, N, M)))
active(sieve(cons(0, Y))) → mark(cons(0, sieve(Y)))
active(sieve(cons(s(N), Y))) → mark(cons(s(N), sieve(filter(Y, N, N))))
active(nats(N)) → mark(cons(N, nats(s(N))))
active(zprimes) → mark(sieve(nats(s(s(0)))))
mark(filter(X1, X2, X3)) → active(filter(mark(X1), mark(X2), mark(X3)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(s(X)) → active(s(mark(X)))
mark(sieve(X)) → active(sieve(mark(X)))
mark(nats(X)) → active(nats(mark(X)))
mark(zprimes) → active(zprimes)
filter(mark(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, mark(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, mark(X3)) → filter(X1, X2, X3)
filter(active(X1), X2, X3) → filter(X1, X2, X3)
filter(X1, active(X2), X3) → filter(X1, X2, X3)
filter(X1, X2, active(X3)) → filter(X1, X2, X3)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sieve(mark(X)) → sieve(X)
sieve(active(X)) → sieve(X)
nats(mark(X)) → nats(X)
nats(active(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
From the DPs we obtained the following set of size-change graphs: